Ergodic Theory and Measured Group Theory
Lecture 8
L^{P}-ergodic theorem. Lt T be a pap transformation on $(x, \mu) . \forall p \geqslant 1$, $\forall f \in L^{p}(x, r), \quad A_{n f}^{\top} \rightarrow \mathbb{R} \underbrace{}_{=\frac{f}{\mathbb{E}}\left(f \mid B_{T}\right)}$ as $n \rightarrow \infty$.
Proof. Recall KA we have $A_{n}^{\top} f \rightarrow \bar{f}$ ace. So if t is bed, then $D C T$ implies tut $A_{n}^{T} f \rightarrow_{L^{r}} f^{-}$as $n \rightarrow \infty$. For an arbitiacy $f \in L^{p}$, let $f_{k} \rightarrow P_{l} f$ sit. each f_{k} is bdl.

$$
\left\|A_{n}^{\top} f-\bar{f}\right\|_{p} \leq\left\|A_{n}^{\top} f-A_{n}^{\top} f_{k}\right\|_{p}+\left\|A_{n}^{T} f_{k}^{(2)}-\bar{f}_{k}\right\|_{p}+\left\|\bar{f}_{k}^{(3)}-\bar{F}\right\|_{p}
$$

(1) $\left\|A_{u}^{\top} f-A_{n}^{\top} f_{k}\right\|_{p}=\left\|A_{n}^{\top}\left(f-f_{k}\right)\right\|_{p} \leqslant\left\|f-f_{v}\right\|_{p} l_{l}$ Bridget (b). $\geqslant 0$ as $k \rightarrow \infty$

(2) $\left\|A_{u}^{\top} f_{k}-f_{k}\right\|_{\nabla} \rightarrow 0$ as $n \rightarrow 0 \quad f_{k}$ ii bdl.

Hence $\left\|A_{u}^{\top}-\bar{f}\right\|_{p}<\varepsilon \quad \forall \varepsilon>0$.

Ergodic decomposition. Lt Y be a pup tecanstormatien on (k, μ), Well try to understand how to partition X into
pieces on ench of chich T is ergoche.

Recall/Learn. For a standard Bonel space X, the space $P(X)$ of probability weasanes is standaed Bonel, whene the Bonel itcenctace is indured h_{y} tixing a cogract topology on X al taking the weakt. dopology on $P(X)$, i.e.

$$
\mu_{n} \rightarrow \mu \quad: \Leftrightarrow \forall f \in C(x), \quad \int_{x} f d \mu_{n} \rightarrow \int_{x} f d \mu
$$

Ergodic decopposition (Farrel-Varadarajan), let T be a pupp trans. oc $[x, y)$.
The is a T-invariant Boul $\nu: X \rightarrow P(X)$ s.t.

$$
x \mapsto \nu_{x}
$$

(i) Ead v_{x} is T-ecgodic $a l$ T-inveriant ad $v_{x}\left(\nu^{-1}\left(v_{x}\right)\right)=1$, i.e. for ang $\lambda \in P(x)$ in the image of this $\operatorname{map}, \lambda\left(\nu^{-1}(\lambda)\right)=1$.
 is called $v_{4} v_{3}$
$\begin{aligned} & \text { The map } x+2 \nu_{x} \text { is called } \nu_{4} \\ & \nu_{3}\end{aligned} \nu_{2}$,

Coc. If x ts ν_{x} is the escodic deangasition of r over T, then $\forall L^{\prime}(x, f)$,

$$
\mathbb{E}\left(f \mid B_{T}\right)=\left(x \mapsto \int_{X} f d \nu_{x}\right) .
$$

In pricalce, \forall Band $B \subseteq X$,

$$
\left.\mathbb{E}\left(\mathbb{1}_{B} \mid B_{T}\right)^{\prime}=\left.\right|_{x} \mapsto \nu_{x}(B)\right) \text {. }
$$

Pcouf. Excruise.

Sketch of proof of the Ery. Des. Thm. Lit A be a ctbl T-inuceciact algelisen of Borel sets the gevecates all Borel sets. By T-invcriant we wean $\forall A \in A, T^{-1}(A) \in A$. BJ the $C_{\text {crathede }}$ ig extension thm, each $\lambda \in P(x)$ is unisuely diterained by its values on A. Thes, we cun ibentity $P(x)$ with a cercain rabuset of $[0,]^{4}$. With a bit of care, we can make this suket doxed by making X compact and $T_{\text {continnous. Define }} v: X \rightarrow[0,1]^{A}$ by $x \mapsto\left(\overline{\mathbb{X}_{A}}(x)\right)_{A \in A}$. Hace $\forall A \in A$,

$$
\begin{equation*}
\mu(A)=\int_{X} \overline{\mathbb{1}}_{A}(x) d \mu(x)=\int_{X} v_{x}(A) d \mu(x) . \tag{*}
\end{equation*}
$$

More over, \forall T-irvacient $Y \leq X$,

$$
\begin{equation*}
\int_{Y} \mathbb{1}_{A} d \mu=\int_{Y} \tilde{\mathbb{1}}_{A}(x) d(x)=\int_{Y} v_{x}(A) d(x) . \tag{4x}
\end{equation*}
$$

Beeser enth v_{x} is T-inscrinut al prob. mensure on the alyibie A, it stags so on $B(x)$. The rest of the poperties of v_{x} are proven using ($k f$) al one also pooves (E) tor all Borel uts by an approximation arganent.

CHD yropps al actions
Chbl scapis. $0 \mathbb{Z}, \mathbb{Q}$

- Poduct, of ctbl groups: $\mathbb{Z}^{d}, \mathbb{Z}^{<\infty}:=\bigoplus_{n \in \mathbb{N}} \mathbb{Z}:=\left\{x \in \mathbb{Z}^{N}\right.$:

$$
\text { spp }(x) \text { is finites). Also } D^{3} \times(\mathbb{D} / 2 \mathbb{R})
$$

$\begin{aligned} & 0 \text { Fcee products: } \mathbb{F}^{d}:=\frac{\mathbb{Z} * \mathbb{Z} * \ldots \mathbb{Z}}{d}, T_{d}:=\mathbb{Z} / 2 \mathbb{Z}^{*} \frac{\mathbb{P}}{2 \mathbb{d}} \\ & \ldots * \mathbb{Z} / 2 \mathbb{D} .\end{aligned}$

$$
\underbrace{\cdots * \pi / 2 d}_{d}
$$

Def. The Lagley graph of a groop Γ with a fibed gerecating set S is the geaph Cag (r, S) unse vectios are the elenenten ot P ad $\forall \gamma, r \in \Gamma$,

$$
\gamma \operatorname{cog}(\Gamma, S) \delta: \Leftrightarrow \gamma \cdot \sigma=\delta \text { for sone } \sigma \in S \text {. }
$$

$\sim_{r} r_{r s}$ This is a labeled ${ }^{\text {dicected }}$ graph vith Ichels $s \in S$.
$\circ \mathbb{Z} \longrightarrow \quad \sin \{ \pm 1$.
$0 \pi^{2}$

- \mathbb{F}_{2}

$0 T_{3}:=\mathbb{Z} / 2 \mathbb{Z} / 22 * \mathbb{Z} / 2 \mathbb{Z}$

