Ergodic Theory and Measured Group Theory Lecture 8

$$\frac{l^{n}expandic \ \text{theorem.}}{\text{VFe} L^{p}(X, M), \ A^{T}_{u}f \rightarrow p E(f \mid \Theta_{T}) \text{ as } u \rightarrow \infty.$$

Find. Reall KA we have $A^{T}_{u}f \rightarrow \overline{f}$ a.e. So if F is bill, ken
 $D(T \text{ implies } M A A^{T}_{u}f \rightarrow p e^{T}_{u}e^{T}$ as $u \rightarrow \infty.$ For an orbitancy
 $f \in L^{p}, \ Rt \ f_{K} \rightarrow pf \ s.t. \ such \ f_{K} (i \ bdd.)$

 $\|A^{T}_{u}f - \overline{f}\|_{p} \in \|A^{T}_{u}f - A^{T}_{u}f_{k}\|_{p} + \|A^{T}_{u}f_{k} - \overline{f}_{k}\|_{p} + \|\overline{f}\|_{x} - \overline{f}\|_{p}$
(i) $\|A^{T}_{u}f - A^{T}_{u}f_{k}\|_{p} = \|A^{T}_{u}(f - f_{u})\|_{p} \in \|F - f_{u}\|_{p} \ \text{theorem } Biidge^{+}(b).$
 $\Rightarrow 0 \ \text{as } k \rightarrow \infty$
(3) $\|\overline{f} - \overline{f}_{u}\|_{p} \rightarrow 0 \ \text{as } u \rightarrow 0 \ f_{u} \ \text{in bdd.}$
Hunce $\|A^{T}_{u} - \overline{f}\|_{p} < S \ \forall S = 0.$

$$\begin{array}{c} \underbrace{\text{loc.}}_{\text{IF}} & \text{IF} & \text{x} + \text{s} & \text{vx} & \text{is the ergodic decorposition of } f & \text{over } T, \text{ then } \forall L'(x, r), \\ & E(f \mid \mathcal{B}_T) = (x \mapsto \int f \, d \, \mathcal{V}_x), \\ & & X \end{array}$$

$$\begin{array}{c} \text{In} & \text{predicular, } \forall \text{ Band } B \in X \\ & & E(1_B \mid \mathcal{D}_T) = (x \mapsto \neg x(B)). \end{array}$$

$$\begin{array}{c} \text{Poorf. Exercise.} \end{array}$$

Sketch of proof of the Erg. Dec. Thun. It to be a still T-invariant
algebra of Borel sets that generates all Borel sets. By
T-invariant we near
$$\forall A \in \Phi$$
, $T^{*}(A) \in \Phi$. By the Carabbet
ry extension thus, each $\lambda \in P(k)$ is uniquely differenced by
its values on Φ . Thus, we can identify $P(X)$ with a certain
rubset of $[0,1]^{\Phi}$. With a bit of care, we can make this subst losed by ma-
king X compact and Toutinuous. Unline $v: X \to [0,1]^{\Phi}$ by $x \mapsto (\overline{\Phi}_{A}(*))_{A \in \Phi}$.
Hence $\forall A \in \Phi$,
 $T(A) - \int \overline{\Pi}_{A}(*) dT(*) = \int v_{X}(A) dT(*)$. (4.3)
More over, $\forall T-invariant Y \in X$,
 $\int \Pi_{A} dT = \int \overline{\Pi}_{A}(*) d(k) = \int v_{X}(A) d(k)$. (4.3)

been with Dx is T-inversional of prob. measure on the algebra A, it stays so on B(X). The cut of the properties of v. are proven using (*A) al one also proves (*) tor all Borel uts by an approximation argument.

all groups at actions

Z, Q
Products of ctbl groups: Z^d, Z^{clo} := ⊕ Z := ½×∈ Z^N: suppled is timite). Also Q³ × (Z/2R)
Free products: IF^d := Z + Z + ... × D, T_d := Z/2R + Z/2R ... × Z/2R. (the groups.

Det. The Cayley graph of a group I will a track guerceding set S is the graph Cay (I, S) whose vertices are the elements of I N AN'LEL' Y (cg(r,s) f : <=> V. r= for some res. s This is a labeled graph with labels se S.

